
Mechanism design for scheduling

George Christodoulou∗ Elias Koutsoupias†

Abstract

We consider mechanism design issues for scheduling problems and
we survey some recent developments on this important problem in Al-
gorithmic Game Theory. We treat both the related and the unrelated
version of the problem.

1 The scheduling problem

The problem of scheduling unrelated machines [21, 14] is one of the most
fundamental algorithmic problems: There are n machines and m tasks∗

and machine i can execute task j in time tij . These times can be totally
unrelated (thus the name of the problem). The objective is to allocate the
tasks to machines to minimize the makespan (the time needed to finish all
tasks). Thus the output is simply a partition of the m tasks into n sets. A
convenient way to express it is to use indicator variables xij ∈ {0, 1}: xij

is 1 iff task j is allocated to machine i. Each task j is allocated to exactly
one machine, therefore we must have

∑n
i=1 xij = 1 for every j. With this

notation, the computational problem can be expressed more precisely: given
n×m values tij , find appropriate xij ∈ {0, 1} which satisfy these constraints
and minimize maxm

i=1

∑

j xijtij.
From the traditional algorithmic point of view, the unrelated machines

scheduling problem is one of the most important open problems. We know
that the problem is NP-hard; it is even NP-hard to approximate it within 3/2
[21]; this lower bound applies also to some special cases [11]. On the positive

∗Max-Planck-Institut für Informatik, Saarbrücken, Germany. Email:

gchristo@mpi-inf.mpg.de
†Department of Informatics, University of Athens. Email: elias@di.uoa.gr
∗We opt for the game-theoretic notation here and we denote the number of machines

and tasks with n and m respectively. In the scheduling literature, they usually use the

opposite notation.

1

side, there is a polynomial-time approximation algorithm with approxima-
tion ratio 2 [21]. Closing the gap between the lower and upper bounds on the
approximation ratio remains a long-standing major algorithmic problem.

There are many interesting variants of the problem. When, for exam-
ple, the times tij are inversely proportional to the speed of the machine,
that is, when there are speeds si and times pj such that tij = pj/si, we
have the special case of the problem called the related machines schedul-
ing problem. Also, when we allow a task to be split across the machines,
which is to say that xij are nonnegative reals instead of integers, we call this
the fractional scheduling problem. The computational complexity of these
problems is completely settled: There is a polynomial time approximation
scheme (PTAS) [13] for the related machines problem and a fully-PTAS
(FPTAS) [15] when the number of machines is fixed; the general case is
strongly NP-complete, so we don’t expect to find an FPTAS unless P=NP.
For the fractional version of the problem, there is a polynomial-time algo-
rithm (because it can be expressed as a linear program).

Nisan and Ronen in their seminal work [27, 28] which started the area of
Algorithmic Mechanism Design considered the unrelated machines problem
from a game-theoretic point of view: suppose that each machine i is a ratio-
nal agent who is the only one knowing the values of row ti. Suppose further
that the machines want to minimize their execution time. Without any in-
centive, the machines will lie in order to avoid getting any task. To coerce
the machines to cooperate, we pay them to execute the tasks. The payments
do not have to be proportional to the execution times, but can be arbitrary
functions. The combination of the algorithmic problem of allocating the
tasks to machines together with the incentives in the form of payments is
called a mechanism. In this article, we survey recent developments in this
area of mechanisms for the scheduling problem.

We consider direct revelation mechanisms with dominant truthful strate-
gies. Direct revelation means that the players—who know the mechanism in
advance—declare their hidden values to the mechanism which collects the
values and computes an allocation of tasks and appropriate payments to the
players. In such a mechanism, a player may have an incentive to lie and
declare values other than his true values. If the mechanism is such that,
independently of the values of the other players, a player has no incentive to
lie, we say that the mechanism is truthful (with dominant truthful strate-
gies). These mechanisms are very desirable and easy to be implemented
since there is no reason for machines to strategize. There other weaker
notions of truthfulness but we don’t consider them in this note.

2

2 Mechanism design

The mechanism design setting for scheduling is a special case of the social
choice problem. We define here the more general framework so that we can
place the scheduling problem within the general picture. In the social choice
setting, there are n players and a set of possible outcomes A which in most
cases is considered finite. The players may value the outcomes differently.
For each player there is a valuation function vi : A → R which gives the
value of player i for every outcome. The goal of the mechanism designer is
to implement a social choice function f which assigns a desirable outcome
to every set of valuation functions. For example, a social choice function
selects the outcome for which the median of the valuations of the players is
maximum. More generally, for every set of valuation functions there may be
a set of desirable outcomes and the mechanism designer wants to implement
a social choice function which selects one of these outcomes.

When we consider problems with finitely many possible outcomes, we can
recast the above in a more familiar notation. A mechanism design problem
with n players and k = |A| outcomes is defined by a subset D of Rn×k.
We call D the domain of the mechanism design problem. A social choice
function f is simply a function from D to {1, . . . , k} (or more generally to
the collection of subsets of {1, . . . , k}).

An instance of a mechanism design problem is simply a point of D. A
concrete way to represent a point of D is by a real-valued n × k matrix v.
Each player i knows the values of row v̂i; this is private information and
it is not known to the mechanism. In a direct-revelation mechanism, each
player i declares values vi of row i. These values may be different than v̂i.
The declarations of the players form a matrix v. The mechanism takes as
input this matrix v and computes two quantities: an outcome o = o(v) ∈
{1, . . . , k} (the outcome of the mechanism) and payments p = p(v) ∈ Rn for
the players. The payoff of player i is the value of the original row at the
outcome minus the payment: v̂i,o − pi.

In summary, a mechanism design problem is defined by a set D of n× k
real matrices (a subset of Rn×k) and a function f from D to subsets of
{1, . . . , k}. The mechanism designer must come up with an outcome function

o : D → {1, . . . , k},
and a payment scheme

p : D → Rn,

such that the outcome o is a desirable outcome (o(v) ∈ f(v̂)) and the pay-
ment scheme induces the players to declare values which produce desirable

3

outcomes.
The mechanism is truthful when the outcome and payment functions

are such that the players gain nothing by not declaring their true values,
i. e., the objective of each player i, for every declared values v−i of the
other players, is maximized when player i declares vi = v̂i. This notion of
truthfulness is called dominant-strategy truthfulness since declaring the true
values is a dominant strategy for each player.

The Revelation Principle states that for every mechanism there is an
equivalent truthful mechanism which on the same input v̂ has the same
outcome and payments. This frees us to consider only truthful mechanisms.

Here are a few typical mechanism design domains:

Example 1 (The unrestricted domain). One of the most natural mechanism
design problems for n players and k outcomes is when D is the whole Rn×k

space.

Example 2 (The combinatorial auction domain). The outcomes are all
allocations of m items to n players; there are k = nm possible allocations.
The domain is defined by values vi,x, one for each player i and for each
allocation x. An allocation x is defined by a matrix where xij is a variable
indicating whether task j is allocated to player i. The values vi,x satisfy the
natural restriction that the valuation of a player depends only on the items
allocated to him: vi,x = vi,x′ when the two allocations agree on player i (that
is, when xi = x′

i). In economic terms this condition says that there are no
externalities. Another natural restriction is that the value of a player can
only increase when he gets additional items (vi,x ≥ vi,x′ when xij ≥ x′

ij for
j = 1, . . . ,m). The values are also nonnegative and they are exactly 0 when
a player is allocated no item.

For example, for n = 3 players and m = 2 items the domain D contains
the points of R3×9 which are of the form:

u1,12 u1,1 u1,1 u1,2 u1,2 0 0 0 0
0 u2,2 0 u2,1 0 u2,12 u2,1 u2,2 0
0 0 u3,2 0 u3,1 0 u3,2 u3,1 u3,12

,

where the values are nonnegative and ui,12 ≥ ui,1 and ui,12 ≥ ui,2.
For the special case of the single-item auction, the matrix is a diagonal

one where the value ui,i is the valuation of player i for the item.

Example 3. The unrelated machines domain This is a special case of the
combinatorial auction when the domain is additive. It is also a cost game

4

(as opposed to a payoff one). The outcomes again are all allocations of m
tasks to n players (k = nm). The domain is defined by vi,x =

∑m
j=1 xijtij.

For example, for n = 2 players and m = 2 tasks the domain D contains the
points of R2×4 for which are of the form:

t11 + t12 t11 t12 0
0 t22 t21 t21 + t22

where tij’s are nonnegative.

2.1 Known mechanisms

Given a domain, one can ask whether there are any (truthful) mechanisms.
If we view the payments as the means to implement a social choice function,
we can rephrase the question: For which social choice functions are there
payment functions so that the resulting mechanism is truthful? In this way
we focus on the social choice function. For example, for the single-item
auction domain, are there payment functions for a mechanism to allocate
the item to the player with maximum (private) value? with the second
maximum value? As we will discuss soon, the answer to the first question
is positive and to the second question negative.

There are few mechanisms that are known to be truthful and the best-
studied one is the VCG mechanism [31, 8, 12].

Example 4. The VCG mechanism and affine maximizers The VCG mecha-
nism implements the social choice function of selecting the outcome (column)
with the maximum total value:

f(v) = argmax
j∈{1,...,k}

n
∑

i=1

vij .

A generalization of this mechanism is the affine maximizer which weights
with positive multipliers λi the values of each player (row) i and add a con-
stant γj to the value of each outcome (column) j:

f(v) = argmax
j∈{1,...,k}

n
∑

i=1

λivij + γj .

The VCG mechanism is truthful for every domain. The payments (for
the general domain) align the objective of each player l with the social choice

5

function. This can be achieved when the payments are

pl(v) = − 1

λl

∑

i6=l

λivij + γj

 .

Player l wants the mechanism to select an outcome j which maximizes vlj −
pl(v) = 1

λl

∑n
i=1 λivij + γj. This is the same expression with the argmax

expression above and shows that the player’s objective is achieved at the
social choice function. The VCG has slightly different payments: Because
these payments may be negative, the VCG mechanism adds appropriate
values to the payment of each player that depend only on the values of the
other players (this keeps the player truthful).

Another interesting class of mechanisms for the scheduling problem are
the task independent mechanisms: Each task is allocated independently of
the remaining tasks. Not all task-independent mechanisms are truthful.
Task-independent mechanisms are special cases of threshold mechanisms:

Example 5. Threshold mechanisms A threshold mechanism for the schedul-
ing domain is one for which there are threshold functions hij such that the
mechanism allocates item j to player i if and only if vij ≥ hij(v−i). What
distinguishes these mechanisms from general mechanisms is that the thresh-
olds depend only on the values of the other players but not on the other values
of the player himself. It is not true in general that every set of functions hij

defines a legal mechanism, as they have to be consistent between them. In
particular, the threshold functions should be such that every item j is allo-
cated to exactly one player. In other words, exactly one of the constraints
vij ≥ hij(v−i), for i = 1, . . . , n, should be satisfied.

3 Truthfulness

One of the central questions in mechanism design is to find a nice charac-
terization of truthful mechanisms. In algorithmic terms, we want to deter-
mine which algorithms are implementable, i.e., for which algorithms for the
scheduling problem there exist payments that make the players truthful. It
should be clear that for rich domains, such as the scheduling domain, not
all algorithms are truthful. In fact, it seems that the set of truthful algo-
rithms is very limited, but whether this is the case or not is perhaps the
most outstanding open problem in algorithmic mechanism design:

Open Problem. Characterize the set of truthful mechanisms for schedul-
ing.

6

But what kind of characterization we seek? We are going to see that
we do have a necessary and sufficient condition, the so-called Monotonicity
Property. But we want a characterization which is more than a necessary
and sufficient condition. An important result in the area of mechanism
design, Roberts’ Theorem [16], shows exactly the type of characterization
we seek. Roberts’ Theorem applies to the unrestricted domain and states
that the only truthful mechanisms for this domain of k ≥ 3 outcomes are
the affine maximizers. In a sense, this is a very disappointing result, because
it says that only very simple algorithms can be implemented. The question
becomes much more interesting for restricted domains and in particular for
the auction and scheduling domain. It is a simple observation that when we
restrict the domain the set of available mechanisms can only become richer.
More precisely, for domains D ⊂ D′, every truthful mechanism for D′ is also
a truthful mechanism for D.

We discuss below the Monotonicity Property which a simple necessary
and sufficient condition for truthfulness. This is true for every convex do-
main, but we restrict the discussion to the scheduling domain.

Definition 1 (Monotonicity Property). An allocation algorithm is called
monotone if it satisfies the following property: for every two sets of tasks t
and t′ which differ only on machine i (i.e., on the i-the row) the associated
allocations x and x′ satisfy

(xi − x′
i) · (ti − t′i) ≤ 0,

where · denotes the dot product of the vectors, that is,
∑m

j=1(xij − x′
ij)(tij −

t′ij) ≤ 0.

The property, which sometimes in the literature is called weak mono-
tonicity, essentially states that when we increase the times of the tasks for
machine i, the allocation for the machine can only become smaller. Notice
that the Monotonicity Property involves only the allocation of one player
(the i-th player).

Theorem 1 (Saks and Yu). A mechanism is truthful if and only if its
allocations satisfy the Monotonicity Property.

To establish that the Monotonicity Property is necessary for truthfulness
is easy (it was done for example in [28]) and we show it below. Saks and
Yu showed that it is also a sufficient condition. In fact, they showed a much
more general result: the property is sufficient for every convex domain; this
includes the unrestricted domain and the combinatorial auction domains.

7

To show that the property is necessary condition for truthful mecha-
nisms, we observe that the payments cannot depend directly on the decla-
ration ti of player i, but indirectly through the selected outcome x(t) and
the declarations t−i of the other players, that is, pi(t) = pi(xi(t), t−i). To
see this, suppose that there exist ti, t

′
i such that xi(ti, t−i) = xi(t

′
i, t−i), but

pi(ti, t−i) < pi(t
′
i, t−i). Then the player whose true processing times are ti

has incentive to declare falsely that its processing times are t′i in order to in-
crease his utility, as we have pi(ti, t−i)−

∑m
j=1 tixij < pi(t

′
i, t−i)−

∑m
j=1 tixij ,

contradicting the truthfulness of the mechanism.
When player i has valuations ti, he has no incentive to declare t′i when

tixi − pi(xi, t−i) ≤ tix
′
i − pi(x

′
i, t−i)

Similarly, when we inverse the roles of t and t′, we have

t′ix
′
i − pi(x

′
i, t

′
−i) ≤ t′ixi − pi(xi, t

′
−i)

Now if we add the above inequalities and take into account that the instances
differ only on the i-th player, that is, t′−i = t−i, we get the Monotonicity
Property.

The implications are that we don’t have to consider at all the payment
algorithm. This transforms the problem from the realm of Game Theory to
the realm of Algorithms. To prove lower bounds or to design good mecha-
nisms, we can completely forget about mechanisms, payments, truthfulness
etc, and simply focus on the subclass of monotone allocation algorithms.

The Monotonicity Property has a straightforward geometric form. For
simplicity, let us consider 2 tasks and consider the space of possible valua-
tions for a particular machine i. The generalization to more tasks is straight-
forward. Fix the values t−i of the remaining players. For every (ti1, ti2), let
us consider how a mechanism which satisfies the Monotonicity Property al-
locates the tasks. In particular, let Rxi1xi2

denote the set of inputs of player
i for which the mechanism has allocation (xi1, xi2) for the i-th player. The
Monotonicity Property is equivalent to the constraint that the boundary
between Rxi1xi2

and Rx′
i1

x′
i2

is of the form (x′
i1 − xi1)ti1 + (x′

i2 − xi2)ti2 = 0.
Since the allocation variables xi1 and xi2 are 0-1, the boundaries have very
specific slopes. Therefore the allocation of the mechanism should have one
the 2 forms of Figure 1.

In other words, a mechanism is truthful if and only if it partitions the
Rn×2 space so that the appropriate lower dimensional cuts have the form of
Figure 1. Thus characterizing the truthful mechanisms amounts to charac-
terize the partitions of Rn×m that have specific lower dimensional cuts.

8

ti1

ti2

R11 R01

R10 R00

ti1

ti2

R11 R01

R10 R00

Figure 1: The two possible ways to partition the positive orthant.

Affine minimizers are the special class of algorithms for which the bound-
aries in Figure 1 are linear functions of the values of the other players. The
diagonal part in the picture exist if and only if the additive constants γj are
not all equal. On the other hand, threshold mechanisms are exactly those
whose diagonal part has 0 length (i.e., the partition is defined by orthogonal
hyperplanes).

A recent paper by Dobzinski and Sundararajan [10] gives a simple char-
acterization of mechanisms for 2 machines. They consider only mechanisms
which have bounded approximation ratio with respect to makespan and they
show that only task-independent mechanisms can be truthful. In [7], a more
complete characterization was given which is independent of the approxima-
tion ratio: for 2 machines only affine minimizers and threshold algorithms
can be truthful†.

In the next 2 sections we consider positive and impossibility results for
the unrelated machines problem. In the last section, we discuss positive
results for the related machines version.

4 Upper bounds for the unrelated case

There are only a few positive results which give approximation algorithms
for the unrelated machines scheduling problem. We discuss most of them
here:

Deterministic mechanisms: Nisan and Ronen [28] gave a mechanism
that is n-approximate. The mechanism is essentially the VCG, i.e., it assigns
job j to the machine with minimum tij. It runs independent second-price

†This holds only for decisive mechanisms, that is mechanisms where all allocations are

possible; non-decisive algorithms are not very natural and among their properties is that

they have unbounded approximation ratio.

9

auctions per item, which is equivalent to the VCG because the valuations
in the scheduling domain are additive.

Randomized mechanisms: There are two major notions of truthfulness
for randomized mechanisms: universally truthful and truthful in expectation
mechanisms. A universally truthful mechanism is a probability distribution
over truthful deterministic mechanisms; this means that even when the play-
ers know the outcome of the random choices (coins), they have no incentive
to lie. This is in contrast to the truthful in expectation mechanisms where
players has no incentive to lie before the random choices but they may have
incentive to lie after the random choices.

Nisan and Ronen [28] suggested the following 1.75-approximate random-
ized mechanism for 2 machines. The mechanism is a universally truthful one
and it works as follows: For every task j, with probability 1/2 the algorithm
gives the item to the minimizer of min{t1j ,

4
3t2j}, and with 1/2 to the mini-

mizer of min{t2j ,
4
3t1j}. Mu’alem and Schapira [24] extended the mechanism

for n machines which gives approximation ratio 1.875n.
Recently, the result of Nisan and Ronen for 2 machines was improved by

Lu and Yu [22] who gave a 1.67-approximation mechanism; they improved
this later [23] to 1.59.

Fractional mechanisms: Christodoulou et al. [5] gave an algorithm for
the fractional version of the problem which allocates each task indepen-
dently. The fractions of task j assigned to machines 1, 2, . . . , n are inversely
proportional to the squares of the execution times of task j. For example,
for 2 machines the allocation of task j is given by

x1j =
t22j

t21j + t22j

x2j =
t21j

t21j + t22j

.

The mechanism has approximation ratio n+1
2 and this is optimal for task-

independent mechanisms.

Restricted Domain mechanisms: Lavi and Swamy [20] studied two
cases where the valuation domain is restricted. Instead of allowing tij to get
any positive real values, they restrict the values to 2: low and high. They
show that in such domains there exist algorithms with constant approxi-
mation ratio, in contrast to general domains where the current best upper
bounds are linear with respect to n.

10

These domains are not convex and Theorem 1 of Saks and Yu [30] does
not apply. Instead a more complicated property, the cycle monotonicity
property [29], is necessary and sufficient for this domain (and every other
domain): The cycle monotonicity property considers closed paths of inputs
and requires that the sum of a certain expression is nonnegative over every
cycle. The Monotonicity Property is the special case when the cycles have
length 2.

When the tasks are allowed to have different low and high values, Lavi
and Swamy gave a 3-approximate algorithm which is truthful in expectation.
The algorithm computes the optimal fractional solution, it transforms it to a
cycle-monotone fractional allocation, and finally rounds it using randomized
rounding. When all tasks have the same low and high values, an even better
result is possible: they gave a 2-approximate deterministic cycle-monotone
algorithm based on maxflow.

5 Lower bounds for the unrelated case

In this section we summarize the main impossibility results and techniques
for the unrelated machines problem. It so happens that all the lower bounds
for this problem (deterministic, fractional, and randomized) are based on the
restrictions of truthfulness and they hold independently of computational
complexity considerations. In other words, the lower bounds apply even to
exponential-time algorithms.

Nisan and Ronen [28] gave a lower bound of 2 for any truthful deter-
ministic mechanism for 2 machines‡. Christodoulou et al. [6] improved the
lower bound to 1+

√
2 = 2.41 for 3 or more machines, and Koutsoupias and

Vidali [17] to 1 + φ ≈ 2.61 for n machines where n is arbitrarily large. It
is a major open problem to close the gap between the lower and the upper
bound.

Conjecture (Nisan and Ronen). No mechanism has approximation ratio
better than n.

Mu’alem and Schapira [24] gave a lower bound of 2 − 1
n

for random-
ized truthful in expectation mechanisms (which also applies to universally
truthful mechanisms). Christodoulou et al. [5] showed that the same bound
holds even for fractional domains. Notice that while for deterministic and
fractional mechanisms we have tight bounds for 2 machines, for randomized

‡It is almost trivial to see that any lower bound for n machines applies to the case of

more than n machines.

11

mechanisms there is still a gap between the lower bound of 1.5 and the upper
of 1.59. It is an interesting open problem here is to close this gap. Inter-
estingly, even for the restricted domain of two values, Lavi and Swamy [20]
showed a lower bound of 11/10.

In the next subsections we discuss the basic ideas behind the lower
bounds for deterministic mechanisms. We don’t consider randomized and
fractional settings, but the main ideas are similar (although sometimes more
complicated) [24, 5].

5.1 The case of 2 machines

Recall that every truthful mechanism is monotone. A useful tool that comes
out of the Monotonicity Property and is used implicitly or explicitly in most
of the lower bound proofs is the following.

Lemma 1. Let t be the input matrix and let x = x(t) be the allocation
produced by a truthful mechanism. Suppose that we change only the pro-
cessing times of machine i in such a way that t′ij > tij when xij = 0, and
t′ij < tij when xij = 1. A truthful mechanism does not change the allocation
to machine i, i.e., xi(t

′) = xi(t).

Proof. By the Monotonicity Property 1, we have that

m
∑

j=1

(tij − t′ij)(xij(t) − xij(t
′)) ≤ 0.

Observe that all terms of the sum are nonnegative (by the premises of the
lemma). The only way to satisfy the inequality is to have all terms equal to
0, that is, xij(t) = xij(t

′).

Now we will use this lemma to get easily a lower bound of 2, which first
appeared in [28].

Theorem 2. Any truthful mechanism has approximation ratio of at least 2
for two or more machines.

Proof. Suppose that we have an instance with n = 2 and m = 3 and tij = 1,
for all i, j. Any allocation algorithm can either allocate all tasks to a single
machine (say the first one), or partition them (say the first two tasks to
the first machine and the third task to the second machine). In the former

12

case, we apply Lemma 1 to the first player (where the star symbol indicates
allocation, and ǫ is an arbitrarily small positive number):

t =

(

1⋆ 1⋆ 1⋆

1 1 1

)

⇒ t′ =

(

1 − ǫ⋆ 1 − ǫ⋆ 0⋆

1 1 1

)

.

The resulting assignment on t′ has approximation ratio of 2(1−ǫ)
1 ≈ 2. In the

latter case, we apply Lemma 1 to the second player:

t =

(

1⋆ 1⋆ 1
1 1 1⋆

)

⇒ t′ =

(

1⋆ 1⋆ 1
1 + ǫ 1 + ǫ 0⋆

)

.

The resulting assignment on t′ has approximation ratio of 2
1+ǫ

≈ 2.

5.2 The case of 3 or more machines

There is a qualitative difference between the case of 2 machines and the case
of 3 or more machines. For 2 machines, the allocation of a player completely
determines the allocation of the other player. This is not true for more than
2 players and it complicates the situation.

There are basically two approaches one can follow to prove a lower bound.
One approach is to provide a global characterization of all possible mech-
anisms, such as Roberts’ Theorem. This approach however requires the
solution of the characterization problem which is potentially a more difficult
problem. For example, Christodoulou et al. [7] use this approach to extend
the lower bound of 2 [27] to instances with only 2 tasks.

The other approach is to use an appropriately chosen subset of the input
instances. The Monotonicity Property implies some relations between the
allocations of these instances. We can use them to show that one of the in-
stances has high approximation ratio. A typical application of this approach
is forthe lower bound of 2.41 [6] and 2.61 [17]. In [6] as we will see later
the set of instances is small. It consists of instances of 2 and 3 machines
respectively and no more than 5 tasks. In [17], they use the same principles
but apply them in an infinite subset of inputs using a double induction to
keep track of how all these allocations depend on each other.

We sketch here the proof of the 2.41 lower bound.

Theorem 3. Any truthful mechanism has approximation ratio of at least
1 +

√
2 for three or more machines.

13

The general idea of the proof is the following: We start with the set of
tasks

t =

0 ∞ ∞ a a
∞ 0 ∞ a a
∞ ∞ 0 a a

 ,

for some parameter a > 1. This set of tasks essentially admits two distinct
allocations (up to symmetry). This is true because the first three tasks need
to be assigned to a single machine by any mechanism with bounded ap-
proximation ratio. For each allocation, we increase or decrease some values
appropriately. Them is is shown that in order to keep the approximation
ratio low (below 1 + α), the following set of tasks must have the allocation
indicated by the stars (in which the first machine gets both tasks 4 and 5):

t =

0⋆ ∞ ∞ 1⋆ 1⋆

∞ 0⋆ ∞ a a
∞ ∞ 0⋆ a a

 .

Finally, the input of the first player is modified as the following matrix
indicates. By using a lemma that is similar in spirit to Lemma 1, but in
addition takes into account the fact that there is a unique way to allocate
the first three tasks, we get the allocation

t =

α⋆ ∞ ∞ 1 − ǫ⋆ 1 − ǫ⋆

∞ 0⋆ ∞ a a
∞ ∞ 0⋆ a a

 .

This allocation has an approximation ratio of a+2
α

, for arbitrarily small
value of ǫ. Taking into account that the ratio is at most 1 + α we get the
theorem.

6 Related machines

In this section, we consider the important special case of the scheduling
problem, the related machines version. In this setting, the processing times
of the tasks are p1 ≥ . . . ≥ pm, while the machines have speeds s1, . . . , sn.
Given an assignment of the jobs to the machines, let wi denote the workload
assigned to machine i. The makespan C(w, s) is maxi wi/si. Monotonicity
for this special case is very simple. An algorithm is monotone (truthful)
when it has the following property: when we decrease the speed of a machine
i, keeping all other speeds the same, the new workload on machine i can
only decrease.

14

The mechanism design version of the problem was first studied by Archer
and Tardos [3]. It is a very important problem in Algorithmic Mechanism
Design, because it’s a typical single-parameter problem, which means that
each player has only one real private value and his objective is proportional
to this value (for a precise definition see Chapters 9 and 12 of [26]). Such
problems were studied extensively by Myerson [25]. Furthermore, the opti-
mal allocation is monotone and therefore truthful, but it cannot be computed
in polynomial time unless P=NP. It is therefore an appropriate example to
explore the interplay between truthfulness and computational complexity.
It is a major open problem whether a deterministic monotone PTAS exists
for this problem§. A very recent breakthrough result [9] shows that there
exists a randomized truthful-in-expectation PTAS.

In contrast to the scheduling problem of unrelated machines, in this spe-
cial case there exist truthful mechanisms that output an optimal allocation.
A concrete example is the Lex-Opt algorithm which outputs the lexico-
graphically first optimal allocation; the lexicographic order is with respect
to the loads (w1, . . . , wn) of the machines.

Theorem 4. [3] Lex-Opt is monotone

Proof. Let w = (w1, . . . , wn) be the workload vector computed by Lex-Opt on
input s = (s1, . . . , sn). We consider the case when machine i reports a slower
speed s′i < si. Let w′ be the new schedule for input s′ = (s′i, s−i). To show
that Lex-Opt is monotone we need to show that w′

i ≤ wi.
Clearly the optimal makespan of the new speed vector can only increase,

i.e. C(w′, s′) ≥ C(w, s). Let’s consider first the case where C(w, s) =
C(w, s′). The workload vector w is the lexicographically first and therefore
Lex-Opt will select this for speeds s′. Clearly in this case, w′

i = wi. In the
other case, when the makespan C(w, s′) is greater than C(w, s), let’s assume
that machine i is the bottleneck in schedule w, i.e., C(w, s′) = wi

s′
i

> C(w, s).

But since w′ is the lexicographically-first optimal workload for s′, we have

that C(w′, s′) ≤ C(w, s′), and therefore
w′

i

s′
i

≤ C(w′, s′) ≤ C(w, s′) = wi

s′
i

.

Again, w′
i ≤ wi.

We next consider randomized approximation polynomial-time mecha-
nisms and then deterministic ones.

§We assume that a mechanism runs in polynomial time when both the allocation al-

gorithm and the payment algorithm run in polynomial time.

15

6.1 Randomized mechanisms

We will discuss 2 mechanisms in this section. The first mechanism is due
to Archer and Tardos [3] and has approximation ratio 3. Later Archer [2]
improved the randomized rounding procedure obtaining a 2-approximate
mechanism. The second mechanism is due to Dhangwatnotai et al. [9] and is
a randomized PTAS. Both mechanisms are truthful-in-expectation and they
have similar approach: they create first a monotone fractional solution and
then apply a randomized rounding procedure. The randomization is useful
only to guarantee truthfulness and has no implication on the approximation
ratio.

A 2-approximate truthful in expectation mechanism [3, 2]
Given the speed vector s = (s1, . . . , sn), the algorithm first computes the

following threshold

TLB = max
j

min
i

max

{

pj

si

,

∑j
k=1 pk

∑i
l=1 sl

}

, (1)

which is a lower bound of the optimal makespan C(w, s).
Given TLB, the algorithm computes a fractional assignment as follows:

It assigns the jobs in non-increasing order with respect to their size, i.e.
p1 ≥ . . . ≥ pm. It first assigns as many jobs as possible to the fastest
machine so that its load becomes equal to TLB . It may have to assign a
fraction of some job to achieve this (thus the assignment is fractional). It
continues the same procedure for the remaining machines. The threshold is
such that all jobs will be assigned to the machines.

We now describe a randomized rounding procedure turn the fractional
allocation into an integral one: Pick a random number α uniformly at ran-
dom in [0, 1]. Assume that task j is fractionally assigned to machines i and
i + 1. If xij ≥ α then assign the task to machine i, otherwise assign it to
machine j.

Theorem 5. The above algorithm is monotone.

Proof. All we need to prove is that the fractional workloads are monotone.
This is because the expected workload of every machine is equal to the
fractional workload (since α was chosen uniformly).

Assume now that a machine i reports a smaller speed s′i < si and let
w and w′ be the workload vectors. To show monotonicity we need to show
w′

i ≤ wi. Let si = β · s′i, for some β > 1. The new threshold T ′
LB can only

16

increase, but it can be bounded by T ′
LB ≤ β · TLB. If machine i had load

TLB , then w′
i ≤ T ′

LB · s′i ≤ β · TLB · s′i ≤ TLB · si = wi.
If machine i was not full (that is, it had load less than TLB), then it

can at most take the load that exceeded the previous machines. Now that
the threshold T ′

LB has increased, the total workload on those machines with
k < i can only increase. Therefore the workload of machine i can only
decrease.

A PTAS truthful in expectation mechanism Very recently, Dhang-
watnotai et al. [9] suggested the following randomized PTAS, that is truthful
in expectation.

The algorithm first groups the jobs of size that differ within a factor of
1 + ǫ from each other, for some small ǫ. Then it smooths the jobs, i.e., it
pretends that every job has a size equal to the average of its group. Then
the algorithm constructs a set P of allowable (fractional) partitions of jobs
to the machines, giving also a total ordering of these partitions. Then the
algorithm optimizes over the partitions in P. From the fractional partition
P , we get a fractional schedule w(P), by giving to machine with the i-
th slowest speed, the i-th smallest partition set. Then using randomized
rounding we get an integral schedule. Finally we replace the smoothed jobs
with the real ones. The algorithm does this by random shuffling.

Theorem 6. The above randomized PTAS is monotone.

Proof. Again it is enough to show that the fractional schedule of the smoothed
jobs is monotone.

Assume that machine i reports a smaller speed s′i < si and let s =
(si, s−i) and s′ = (s′i, s−i) be the corresponding speed vectors. Let machine i
be the k-th slowest in s and the k′-th slowest in s′, with k′ ≤ k. Let us denote
by P = P (s) and P ′ = P (s′) the corresponding partitions chosen by the
algorithm in both cases. Let us also denote by w(P) = (w1(P), . . . , wn(P)),
the sorted (in increasing order) workload vector with respect to the partition
P . We need to prove that wk′(P ′) ≤ wk(P).

Clearly the makespans satisfy C(w(P ′), s′) ≥ C(w(P), s), since machine
i has decreased its speed. Let us first assume that the schedule induced by
the partition P , does not increase the makespan for s′, i.e. C(w(P), s′) =
C(w(P), s). Therefore P ′ = P and since the player i has decreased its
position in the sorted speed vector s′, it is wk′(P ′) = wk′(P) ≤ wk(P).

If the schedule induced by P causes an increase of the makespan for s′,
then the bottleneck is one of the machines in the positions between k′ and
k, say the machine with index l ∈ [k′, k].

17

The workload of the machine in this position decreases, i.e. wl(P
′) ≤

wl(P) because

wl(P
′)

s′l
≤ C(w(P ′), s′) ≤ C(w(P), s′) =

wl(P)

s′l
.

Finally we get wk′(P ′) ≤ wl(P
′) ≤ wl(P) ≤ wk(P), as needed.

6.2 Deterministic mechanisms

We now consider deterministic mechanisms for the related machines prob-
lem. We distinguish 2 cases: the case of fixed number of machines (for which
there is a FPTAS for the non-mechanism-design version) and the case of vari-
able number of machines (for which there is a PTAS but no FPTAS unless
P=NP).

6.2.1 Fixed number of machines

Auletta et al. [4] give the first deterministic polynomial-time monotone al-
gorithm for the fixed number of machines problem. Their algorithm is 4-
approximate. The algorithm schedules optimally the h largest jobs, for some
parameter h and it assigns the rest of the jobs in a greedy fashion. A cen-
tral point of their approach is that the greedy allocation is monotone for the
special case when the speeds are powers of 2. They first round down the
originals speeds in the closest power of 2, and then apply their monotone
algorithm.

This result was improved by Andelman et al. [1] who gave a PTAS and
a different mechanism FPTAS. The PTAS algorithm first modifies the set
M of the jobs to a set M ′ as follows: It partitions the jobs into a set B of
big jobs, and a set S of small jobs. A job is in B if its size is above some
threshold T . Then, jobs in S are packed into chunks of size in [T/2, T] (the
last chunk may have size than T/2). Let us call the set of chunks S′. The
working set of jobs is the merge of the two sets, M ′ = B ∪ S′, for which
we find the optimal assignment applying the lexicographically first optimal
algorithm Lex-Opt .

The algorithm is trivially monotone, as the construction of the modified
job set M ′ is independent of the speed vector and because the Lex-Opt algorithm
is monotone, as we showed in Theorem 4.

Andelman et al. [1] gave a different monotone FPTAS for the problem.
The algorithm takes any black-box algorithm with approximation ratio c

18

and transforms it to a monotone algorithm with approximation c(1 + ǫ), for
every ǫ > 0. They use this on the FPTAS of [15].

The transformation is performed in 3 steps:

1. In the first step the algorithm produces a modified vector of speeds
d as follows: First it rounds the speeds down to powers of (1 + ǫ).
Then it normalizes the vector such that dn = 1. Finally, it rounds
the machines that are very slow, with respect to some threshold L to
(1 + ǫ)−L.

2. In the second step the algorithm performs an enumeration over all the
different vectors d′ with speeds (1 + ǫ)−i, with i ∈ {0, L}. For every
such vector d′, it applies the black-box algorithm. Finally it sorts the
workloads such that the machine with the i-th smallest speed will get
the i-th smallest workload.

3. In the final step, it tries all the sorted assignments to d and outputs the
assignment that minimizes the makespan (choosing the lexicographi-
cally first in case of ties).

6.2.2 Arbitrary number of machines

The following algorithm due to Andelman et al. [1] is based on the ideas of
the algorithm of Archer and Tardos (Section 6.1) and has approximation ra-
tio 5. To overcome the problem of derandomizing imposed by monotonicity
they modify the speed set.

The currently best deterministic algorithm is due to Kovacs [18]. The
algorithm first rounds the speeds down to the closest power of 2, i.e. di =
2⌊log si⌋. Then it runs the well-known algorithm Longest Processing Time
first (LPT) on the modified speed vector d. Finally, among machines of the
same rounded speed, the algorithm reorders the assigned work such that
wi ≤ wi+1. The algorithm is monotone and attains approximation ratio
2.8 [19]. The proof of its monotonicity is complicated and it is beyond the
scope of this article.

7 Conclusions

The scheduling problem with its many facets is one of the driving problems
of the area of Algorithmic Mechanism Design. There are many interesting
open problems, but we feel that the following are the most important:

19

• Characterize the set of truthful mechanisms for unrelated machines.

• Close the gap between the lower (2.61) and the upper (n) bound on
the approximation ratio for unrelated machines. Also important are
the same questions about the fractional and randomized case.

• Give a deterministic PTAS mechanism for the related machines prob-
lem or prove that none exists.

References

[1] Nir Andelman, Yossi Azar, and Motti Sorani. Truthful approximation
mechanisms for scheduling selfish related machines. Theory of Comput-
ing Systems, 40(4):423–436, 2007.

[2] Aaron Archer. Mechanisms for Discrete Optimization with Rational
Agents. PhD thesis, Cornell University, January 2004.

[3] Aaron Archer and Éva Tardos. Truthful mechanisms for one-parameter
agents. In 42nd Annual Symposium on Foundations of Computer Sci-
ence (FOCS), pages 482–491, 2001.

[4] Vincenzo Auletta, Roberto De Prisco, Paolo Penna, and Giuseppe Per-
siano. Deterministic truthful approximation mechanisms for scheduling
related machines. In Volker Diekert and Michel Habib, editors, STACS,
volume 2996 of Lecture Notes in Computer Science, pages 608–619.
Springer, 2004.

[5] George Christodoulou, Elias Koutsoupias, and Annamária Kovács.
Mechanism design for fractional scheduling on unrelated machines.
In Automata, Languages and Programming: 34th International Col-
loquium (ICALP), pages 40–52, 2007.

[6] George Christodoulou, Elias Koutsoupias, and Angelina Vidali. A lower
bound for scheduling mechanisms. In ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pages 1163–1170, 2007.

[7] George Christodoulou, Elias Koutsoupias, and Angelina Vidali. A char-
acterization of 2-player mechanisms for scheduling. In Algorithms - ESA
2008, 16th Annual European Symposium, pages 297–307, 2008.

[8] E. H. Clark. Multipart pricing of public goods. Public Choice, 11:17–33,
1971.

20

[9] Peerapong Dhangwatnotai, Shahar Dobzinski, Shaddin Dughmi, and
Tim Roughgarden. Truthful approximation schemes for single-
parameter agents. In FOCS, pages 15–24, 2008.

[10] Shahar Dobzinski and Mukund Sundararajan. On characterizations
of truthful mechanisms for combinatorial auctions and scheduling. In
ACM Conference on Electronic Commerce, pages 38–47, 2008.

[11] Tomás Ebenlendr, Marek Krcal, and Jiri Sgall. Graph balancing: a
special case of scheduling unrelated parallel machines. In Shang-Hua
Teng, editor, SODA, pages 483–490. SIAM, 2008.

[12] T. Groves. Incentives in teams. Econometrica, 41:617–663, 1973.

[13] Dorit S. Hochbaum and David B. Shmoys. A polynomial approximation
scheme for scheduling on uniform processors: Using the dual approxi-
mation approach. SIAM J. Comput., 17(3):539–551, 1988.

[14] D.S. Hochbaum. Approximation algorithms for NP-hard problems.
PWS Publishing Co. Boston, MA, USA, 1996.

[15] Ellis Horowitz and Sartaj Sahni. Exact and approximate algorithms for
scheduling nonidentical processors. J. ACM, 23(2):317–327, 1976.

[16] Roberts Kevin. The characterization of implementable choice rules.
Aggregation and Revelation of Preferences, pages 321–348, 1979.

[17] E. Koutsoupias and A. Vidali. A lower bound of 1+phi for truthful
scheduling mechanisms. In Mathematical Foundations of Computer Sci-
ence (MFCS), pages 454–464, Krumlov, Czech Republic, 26-31 August
2007.

[18] Annamária Kovács. Fast monotone 3-approximation algorithm for
scheduling related machines. In Algorithms - ESA 2005, 13th Annual
European Symposium, pages 616–627, 2005.

[19] Annamária Kovács. Fast Algorithms for Two Scheduling Problems.
PhD thesis, Universität des Saarlandes, 2007.

[20] Ron Lavi and Chaitanya Swamy. Truthful mechanism design for multi-
dimensional scheduling via cycle monotonicity. In ACM Conference on
Electronic Commerce (EC), 2007.

21

[21] J.K. Lenstra, D.B. Shmoys, and É. Tardos. Approximation algorithms
for scheduling unrelated parallel machines. Mathematical Programming,
46(1):259–271, 1990.

[22] Pinyan Lu and Changyuan Yu. An improved randomized truthful mech-
anism for scheduling unrelated machines. In STACS, pages 527–538,
2008.

[23] Pinyan Lu and Changyuan Yu. Randomized truthful mechanisms for
scheduling unrelated machines. In WINE, pages 402–413, 2008.

[24] Ahuva Mu’alem and Michael Schapira. Setting lower bounds on truth-
fulness. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1143–1152, 2007.

[25] Roger B. Myerson. Optimal auction design. Mathematics of Operations
Research, 6(1):58–73, 1981.

[26] N. Nisan, T. Roughgarden, E. Tardos, and V.V. Vazirani. Algorithmic
Game Theory. Cambridge University Press, 2007.

[27] Noam Nisan and Amir Ronen. Algorithmic mechanism design (ex-
tended abstract). In Proceedings of the Thirty-First Annual ACM Sym-
posium on Theory of Computing (STOC), pages 129–140, 1999.

[28] Noam Nisan and Amir Ronen. Algorithmic mechanism design. Games
and Economic Behavior, 35:166–196, 2001.

[29] Jean-Charles Rochet. A necessary and sufficient condition for rational-
izability in a quasilinear context. Journal of Mathematical Economics,
16:191–200, 1987.

[30] Michael E. Saks and Lan Yu. Weak monotonicity suffices for truth-
fulness on convex domains. In Proceedings 6th ACM Conference on
Electronic Commerce (EC), pages 286–293, 2005.

[31] W. Vickrey. Counterspeculation, Auctions and Competitive Sealed Ten-
ders. Journal of Finance, pages 8–37, 1961.

22

